# $BV$ functions and sets of finite perimeters in sub-Riemannian manifolds

**preprint**
**year:** 2013

**abstract:** We give a notion of $BV$ function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic forms
$G_p: T_pM \to [0,\infty]$ are given. Using this notion, we generalize the structure theorem for $BV$ functions that holds in the Euclidean case.
When we consider sub-Riemannian manifolds, our definition coincide with the one given in the more general context of metric measure spaces which are doubling and support a Poincar\'e inequality. We then focus on finite perimeter sets, i.e., sets whose characteristic function is $BV$, in sub-Riemannian manifolds. Under an assumption on the nilpotent approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].

The paper is available on the
cvgmt preprint server.